УДК [612.014.462.9]:611.018.52 doi: 10.21685/2072-3032-2023-4-21

Изменения показателей агрегатограммы у пациентов с COVID-19 под воздействием клопидогреля и аспирина

Д. В. Горелов¹, В. В. Потапов², И. С. Милтых³, О. К. Зенин⁴

¹Клиническая рудничная больница Министерства здравоохранения Донецкой народной республики, Макеевка, Россия
²Донецкий национальный медицинский университет имени М. Горького, Донецк, Россия
^{3,4}Пензенский государственный университет, Пенза, Россия
¹GorelovD.V@yandex.ru, ²x3x3x23@rambler.ru,
³me@miltykh.com, ⁴zen.olegz@gmail.com

Аннотация. Актуальность и цели. Патофизиологические процессы в легких при COVID-19 имеют некоторые особенности, схожие с синдромом активации макрофагов, диссеминированным внутрисосудистым свертыванием, которые возникают при других заболеваниях и соответствуют современной парадигме «тромбовоспаления». Антиагреганты могут влиять на течение COVID-19 как фактор, способствующий снижению уровня «тромбовоспаления» и препятствующий агрегации тромбоцитов. Оценить роль агрегации тромбоцитов при COVID-19 возможно с помощью агрегатограммы. Цель работы – провести сравнительный анализ агрегатограмм пациентов, не получающих терапию антиагрегантами и получающих антиагреганты в стандартной дозе при COVID-19. Материалы и методы. В исследовании приняли участие 55 пациентов в возрасте от 41 до 75 лет (средний возраст 63.9 ± 1.3 года); мужчин – 32, женщин – 23 человека. На основании включения или невключения антиагрегантов в протокол интенсивной терапии пациенты были разделены на две группы. Группа 1 (26 больных) – пациенты, которые не принимали антиагреганты до COVID-19, но начали принимать с целью тромбопрофилактики по назначению врача в отделении интенсивной терапии. Группа 2 (29 больных) – пациенты, которые не принимали антиагреганты до COVID-19 и не принимают их во время лечения COVID-19 в отделении интенсивной терапии. Результаты. У пациентов групп 1 и 2 присутствует склонность к увеличению степени агрегации тромбоцитов по индуктору аденозиндифосфата в дозе 0,5; 1,0; 2,0 ммоль/л по сравнению с референсными значениями. Выводы. Полученные результаты свидетельствуют о развитии у пациентов обеих групп процессов гиперагреации тромбоцитов с васкулитом, что характерно для синдрома системного воспалительного ответа при COVID-19 и подтверждает теорию «тромбовоспаления». В среднем увеличение составило не более 20 % от референсных показателей. В процессе проведения интенсивной терапии у пациентов группы 1 на 5-е сут отмечалась положительная динамика в снижении агрегационной способности тромбоцитов при инкубировании их аденозиндифосфата в разведении 0,5; 1,0 и 2,0 ммоль/л соответственно. Это свидетельствовало о снижении способности тромбоцитов к агрегации, что является дополнительным фактором снижения риска развития тромбозов.

Ключевые слова: COVID-19, агрегатограмма, интенсивная терапия, антиагреганты, теория «тромбовоспаления»

Для цитирования: Горелов Д. В., Потапов В. В., Милтых И. С., Зенин О. К. Изменения показателей агрегатограммы у пациентов с COVID-19 под воздействием клопидогреля и аспирина // Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2023. № 4. С. 210–220. doi: 10.21685/2072-3032-2023-4-21

[©] Горелов Д. В., Потапов В. В., Милтых И. С., Зенин О. К., 2023. Контент доступен по лицензии Creative Commons Attribution 4.0 License / This work is licensed under a Creative Commons Attribution 4.0 License.

Aggregogram changes in COVID-19 patients treated by clopidogrel and aspirin

D.V. Gorelov¹, V.V. Potapov², I.S. Miltykh³, O.K. Zenin⁴

¹Makeevka Clinical Hospital, Makeevka, Russia ²Donetsk National Medical University named after M. Gorky, Donetsk, Russia ^{3,4}Penza State University, Penza, Russia ¹GorelovD.V@yandex.ru, ²x3x3x23@rambler.ru, ³me@miltykh.com, ⁴zen.olegz@gmail.com

Abstract. Background. Pathophysiological processes in lungs in COVID-19 have some similarities with macrophage activation syndrome, disseminated intravascular coagulation, which occur in other diseases and correspond to modern paradigm of "thrombosis". Antiaggregants can influence the COVID-19 as contributing factors in reducing the level of "thrombosis" and preventing platelet aggregation. It is possible to assess the role of platelet aggregation in COVID-19 using aggregograms. The purpose of the study is to compare the aggregograms of patients without antiaggregant and those receiving standard-dose antiaggregant at COVID-19. Materials and methods. The study included 55 patients aged 41 to 75 years (mean age 63.9±1.3 years). There were 32 men and 23 women. The patients were divided into 2 groups according to the pattern of anti-aggregates use in the intensive care protocol: Group 1 (26 patients) - patients who did not take antiplatelet agents before COVID-19, but started for thromboprophylaxis as prescribed by a doctor in the intensive care unit. Group 2 (29 patients) - patients who had not taken antiplatelet agents before COVID-19 and did not take them during COVID-19 treatment in the ICU. Results. Analyzing the platelet aggregation indices of patients in groups 1 and 2, both groups of patients have a tendency to an increased rate of platelet aggregation by the inducer ADP at 0,5; 1.0;2.0 mmol/l compared with normal reference values. Conclusions. The above indicates the development of platelet hyperaggregation with vasculitis in both groups, which is characteristic of the systemic inflammatory response syndrome in COVID-19 and supports the "thrombosis" theory. The average increase in aggregation was no more than 20% of the reference values. In the treatment of group 1 patients on the 5th day, positive dynamics in the reduction of platelet aggregation capacity was observed when platelets were incubated with ADP at dilutions of 0.5; 1.0 and 2.0 mmol/l, respectively. This indicated a decrease in platelet aggregation capacity, which is undoubtedly an additional factor in reducing the risk of thrombosis.

Keywords: COVID-19, aggregogram, intensive care, antiaggregants, "thrombosis" theory **For citation**: Gorelov D.V., Potapov V.V., Miltykh I.S., Zenin O.K. Aggregogram changes in COVID-19 patients treated by clopidogrel and aspirin. *Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Meditsinskie nauki = University proceedings. Volga region. Medical sciences.* 2023;(4):210–220. (In Russ.). doi: 10.21685/2072-3032-2023-4-21

Введение

В конце декабря 2019 г. в больницы г. Ухань начали поступать пациенты, страдающие от пневмонии неизвестной природы, которая была эпидемиологически связана с рынком морепродуктов и сырых животных в провинции Хубей, Китай. Дальнейший анализ показал, что данная пневмония была вызвана новым коронавирусом — 2019-nCoV [1]. Известно, что ключевую роль в развитии COVID-19 играют эндотелиит и тромбоз [2]. Установлено, что повышенная вязкость крови при тяжелых формах COVID-19 является потенциальным виновником эндотелиального повреждения [3]. Патофизио-

логические процессы в легких при COVID-19 имеют некоторые особенности, схожие с синдромом активации макрофагов, диссеминированным внутрисосудистым свертыванием, которые возникают при других заболеваниях и соответствуют современной парадигме «тромбовоспаления» [3].

Тромбообразование может происходить посредством передачи сигналов через ангиотензиновые рецепторы (и другие провоспалительные факторы), которые способствуют высвобождению гликопротеинового тканевого фактора (ТФ) клеточной поверхности [4], VII фактора свертывания крови (сериновая протеаза) [5]. В ответ на повреждение и воспаление эндотелиальные клетки, альвеолярные эпителиальные клетки, фибробласты и клетки врожденного иммунитета (макрофаги и нейтрофилы) «представляют» ТФ [6], который вместе с фактором свертывания VII / VIIа инициирует внешний путь коагуляции [7].

Исходя из вышесказанного можно предположить, что назначение антиагрегантов [8] как факторов, способствующих снижению уровня «тромбовоспаления» и препятствующих агрегации тромбоцитов [9], положительно скажется на течении COVID-19. Агрегатограмма позволяет оценить процессы агрегации тромбоцитов под действием индукторов или агонистов агрегации. Индукторы агрегации — это вещества различной природы, которые вызывают активацию тромбоцитов. Условно они разделены на физиологические и нефизиологические. Физиологические вещества вырабатываются в организме человека в норме, например: аденозиндифосфат (АДФ), адреналин, коллаген, тромбин. К нефизиологическим относят, в частности, антибиотик ристоцетин, который активирует агрегационную способность тромбоцитов.

Цель работы: провести сравнительный анализ агрегатограмм пациентов без терапии антиагрегантами и получающих антиагреганты в стандартной дозе при COVID-19.

Материалы и методы

Исследование проводилось на базе отделения интенсивной терапии Центральной клинической больницы г. Макеевки (ДНР, РФ) на протяжении 2019–2020 гг. у пациентов с COVID-19. Исследование проведено с соблюдением этических принципов, включая Хельсинкскую декларацию Всемирной медицинской ассоциации. Исследование одобрено локальным этическим комитетом Донецкого национального медицинского университета им. М. Горького. Все участники исследования подписали добровольное информированное согласие.

В исследовании приняли участие 55 пациентов в возрасте от 41 до 75 лет (средний возраст 63.9 ± 1.3 года); мужчин — 32, женщин — 23 человек. Пациенты были разделены на две группы. Группа 1 (26 больных) — пациенты, которые не принимали антиагреганты до COVID-19, но начали принимать с целью тромбопрофилактики по назначению врача в отделении интенсивной терапии. Группа 2 (29 больных) — пациенты, которые не принимали антиагреганты до COVID-19 и не принимают их во время лечения COVID-19 в отделении интенсивной терапии. Качественный состав групп (количество мужчин и женщин, средний возраст пациентов) был примерно одинаков.

Пациентам группы 1 антиагреганты были назначены в 1-е сут после поступления в отделении интенсивной терапии. Применяли стандартную дозу антиагрегантной терапии (аспирин или клопидогрель по 75 мг 1 раз в день). Антиагрегантная терапия проводилась по соответствующим кардиологическим показаниям (у всех пациентов данной группы были верифицированы заболевания сердечно-сосудистой системы (стенокардия функционального 2–4 класса, перенесенный инфаркт миокарда в анамнезе, гипертоническая болезнь II–III стадии, высокий риск и т.д. [10, 11]).

Забор проб крови производился непосредственно при поступлении в стационар. Затем на 5-е сут пребывания в отделении интенсивной терапии. Отбор цельной крови производился одноразовым шприцем в объеме 5,0 мл из периферической вены с соблюдением правил асептики и антисептики. В транспортировочном контейнере вакутайнер с кровью в тот же день пробу доставляли в лабораторию и проводили анализ. Для забора и доставки крови использовали вакутайнеры фирмы Improve (Guangzhou Improve Medical Instruments Co., Ltd, Китай) объемом 4,5 мл с 3,8 % раствором цитрата натрия (соотношение крови и реагента 9:1 соответственно) для изучения плазмы крови.

Анализ агрегации тромбоцитов проводили на оптическом агрегометре Sibiya (Франция), анализ включал в себя индукцию агрегации тромбоцитов in vitro с помощью агонистов: АДФ (0,5 ммол/л; 1,0 ммоль/л; 2,0 ммоль/л соответственно), ристомицин (15 мг/л) и коллаген (20 мг/л).

В соответствии с клиническими рекомендациями [12] все пациенты (групп 1 и 2) получали гепарин, в нашем случае это низкомолекулярный гепарин надропарин кальция подкожно 3800 анти-Ха МЕ (0,4 мл) 1 раз/сут при массе тела \leq 70 кг или 5700 анти-Ха МЕ (0,6 мл) 1 раз/сут при массе тела \geq 70 кг.

Тяжесть состояния пациентов оценивали по шкале News-2 (National Early Warning Score), предложенной Королевским колледжем врачей (Royal College of Physicians).

Статистически значимых отличий по шкале News-2 в момент госпитализации пациентов в отделение интенсивной терапии между группами не выявлено (p=0,36). В обеих группах пациентов оценка 7 баллов и более явилась показанием к оказанию неотложной помощи в отделении интенсивной терапии.

Из острофазовых показателей, определяемых в сыворотке крови, которые по данным литературы [13] коррелируют с тяжестью состояния пациентов и способствуют агрегации тромбоцитов при COVID-19, в отделении интенсивной терапии определяли уровень D-димера, С-реактивного белка и фибриногена (методом Клауса). Также определяли основные показатели коагулограммы – активированное частичное тромбопластиновое время (АЧТВ), протромбиновое время (ПВ), тромбиновое время (ТВ), содержание растворенных фибрин-мономерных комплексов (РФМК) на оптическом полуавтоматическом коагулометре K-3003 OPTIC (Elza-bis-Kselmed, Польша).

Статистический анализ проводили с использованием лицензионного пакета прикладных статистических программ: IBM SPSS Statistics 27. Распределение величин всех изучаемых показателей было отлично от нормального закона распределения (критерий Колмогорова — Смирнова). Для характеристики различий в независимых выборках применяли U-критерий Манна — Уитни. Различия в связанных выборках характеризовали с помощью

Т-критерия знаковых рангов Уилкоксона. Статистическую значимость различий принимали за p < 0.05. Численные данные представляли в виде медианы и 95 % доверительного интервала медианы.

Результаты и обсуждение

Был проведен внутригрупповой и межгрупповой сравнительный анализ величин острофазовых показателей, характерных для воспаления в целом и имеющих прогностическое значение при COVID-19 в 1-е и 5-е сут после поступления пациентов в отделение интенсивной терапии (табл. 1).

Таблица 1 Результаты сравнения значений острофазовых показателей между группами пациентов и внутри групп

Показатель		Группа 1	Группа 2	p
D-димер, нг/мл Ме (95 % ДИ)	1-е сут	1964,5 (1540,6; 3060,3)	1958,5 (1630,5; 3193,4)	0,38
	5-е сут	898,0* (708; 1730,7)	1550,0 (1354,6; 2716,3)	0,0003
С-реактивный белок, мг/л Ме (95 % ДИ)	1-е сут	187,0 (89,6; 203,5)	197,0 (139,5; 209,9)	0,53
	5-е сут	45,8* (39,2; 61,1)	55,75* (45,6; 76,4)	0,13
Фибриноген г/л Ме (95 % ДИ)	1-е сут	6,1 (5,5; 6,3)	5,9 (3,9; 5,1)	0,48
	5-е сут	3,3* (2,9; 3,7)	4,4 (3,9; 5,1)	0,003

Примечание. * — статистическая значимость различий величин исследуемых по отношению к таковым в 1-е сут на уровне p < 0.05 в соответствии с Т-критерием знаковых рангов Уилкоксона; p — уровень статистической значимости U-критерий Манна — Уитни. ДИ — доверительный интервал.

Анализ данных, приведенных в табл. 1, говорит о том, что значения исследуемых показателей пациентов группы 1 по уровню D-димера, С-реактивного белка и фибриногена статистически значимо не отличаются от таковых у пациентов группы 2. Это связано с наличием исходной тяжелой дыхательной недостаточности у пациентов обеих групп. Внутригрупповое сравнение величин изучаемых показателей демонстрирует статистически значимое снижение уровня D-димера, С-реактивного белка и фибриногена на 5-е сут проведения интенсивной терапии у пациентов группы 1. У пациентов группы 2 отмечалось только статистически значимое снижение С-реактивного белка.

Сравнительный анализ коагулограмм (табл. 2) у пациентов групп 1 и 2 в 1-е сут после поступления в отделение интенсивной терапии показывает склонность к незначительной гиперкоагуляции, которая не достигает критических значений. Статистически значимых отличий между сравниваемыми величинами изучаемых показателей представителей групп 1 и 2 обнаружено не было (табл. 2). Референсные значения для АЧТВ: 20–45 с; для ПВ –

11-15 с; для TB -12-16 с; для РФМК - менее 4 мг. Анализ коагулограмм на 5-е сут лечения также не показал статистически значимых отличий между сравниваемыми величинами изучаемых показателей представителей групп 1 и 2.

Таблица 2 Результаты сравнения значений показателей коагулограмм между группами пациентов и внутри групп

Показатель		Группа 1	Группа 2	p
АЧТВ, с Ме (95 % ДИ)	1-е сут	28,5 (25,2; 36,8)	29,5 (24,4; 35,6)	0,63
	5-е сут	43,0* (38,2; 50,8)	44,0* (39,9; 52,8)	0,75
ПВ, с Ме (95 % ДИ)	1-е сут	19,8 (16,5; 25,6)	19,5 (15,0; 26,1)	0,57
	5-е сут	19,0 (13,9; 23,8)	19,5 (13,3; 24,2)	0,67
ТВ, с Ме (95 % ДИ)	1-е сут	17,0 (11,1; 20,8)	16,5 (11,4; 21,2)	0,55
	5-е сут	17,0 (11,8; 21,1)	17,5 (11,2; 20,0)	0,54
РФМК, мг Ме (95 % ДИ)	1-е сут	18,1 (13,5; 24,7)	18,5 (14,3; 25,2)	0,49
	5-е сут	16,0 (9,2; 20,1)	16,0 (8,3; 21,2)	0,51

Примечание. * — статистическая значимость различий величин исследуемых по отношению к таковым в 1-е сут на уровне p < 0.05 в соответствии с Т-критерием знаковых рангов Уилкоксона; p — уровень статистической значимости, U-критерий Манна — Уитни.

Далее был проведен сравнительный анализ величин показателей агрегатограммы на 1-е и 5-е сут от начала интенсивной терапии. Значения исследуемых показателей агрегатограмм у пациентов групп 1 и 2 в 1-е сут статистически значимо не отличались друг от друга (табл. 3). Данные табл. 3 демонстрируют статистически значимое отличие значений показателей АЧТВ в обеих группах на 1-е и 5-е сут лечения, что вполне объяснимо приемом в обеих группах пациентов антикоагулянтов для профилактики возможных тромбозов. В частности, на этапе интенсивной терапии использовали низкомолекулярный гепарин, а также управляемый нефракционированный гепарин в дозе от 500 до 1500 МЕ/ч при отсутствии реакции у больных на низкомолекулярный гепарин при анализе анти-Ха активности гепарина. На этапе реабилитации пациентов, после перевода их из отделения интенсивной терапии, либо продолжали использовать низкомолекулярные гепарины, либо новые оральные антикоагулянты, в частности ксарелто (ривароксабан) в дозе от 10 до 20 мг 1 раз/сут.

В процессе проведения интенсивной терапии у пациентов обеих групп на 5-е сут был проведен повторный сравнительный статистический межгрупповой и внутригрупповой анализ значений острофазовых показателей, коагу-

лограммы и агрегатограммы между группами 1 и 2 пациентов (табл. 1–3). Обращает на себя внимание статистически значимое снижение уровня D-димера и C-реактивного белка в процессе лечения, что свидетельствует о положительном исходе COVID-19 и регрессе клинических симптомов.

Таблица 3 Результаты сравнения значений показателей агрегатограмм между группами пациентов и внутри групп

Показатель		Группа 1	Группа 2	р
АДФ 0,5 ммоль/л Ме (95 % ДИ)	1-е сутки	22,3 (18,4; 27,6)	18,8 (15,7; 26,8)	0,27
	5-е сутки	9,9* (8,0; 11,7)	17,5 (13,4; 23,7)	0,003
АДФ 1,0 ммоль/л Ме (95 % ДИ)	1-е сутки	25,3 (45,3; 52,8)	49,75 (41,9; 52,4)	0,63
	5-е сутки	27,4* (26,5; 36,3)	55,5 (51,6; 64,8)	0,01
АДФ 2,0 ммоль/л Ме (95 % ДИ)	1-е сутки	55,4 (48,3; 56,7)	50,5 (45,8; 54,8)	0,20
	5-е сутки	40,1* (34,9; 44,0)	52,0 (46,3; 58,8)	0,02
Коллаген 20 мг/л Ме (95 % ДИ)	1-е сутки	62,1 (51,1; 74,2)	67,4 (55,1; 70,7)	0,29
	5-е сутки	53,4 (48,6; 57,2)	56,9 (53,2; 60,3)	0,17
Ристомицин 15 мг/л Ме (95 % ДИ)	1-е сутки	62,4 (58,2; 69,1)	60,4 (56,0; 62,7)	0,32
	5-е сутки	55,8 (52,6; 59,5)	65,1 (56,5; 66,5)	0,10

Примечание. * — статистическая значимость различий величин исследуемых по отношению к таковым в 1-е сут на уровне p < 0.05 в соответствии с Т-критерием знаковых рангов Уилкоксона; p — уровень статистической значимости, U-критерий Манна — Уитни.

Анализ значений показателей агрегатограмм у пациентов группы 1 (принимающих клопидогрель или аспирин в дозе 75 мг/сут) показал положительную динамику снижения агрегационной способности тромбоцитов, что, несомненно, является дополнительным положительным фактором снижения риска развития тромбозов. На рис. 1 показан пример снижения агрегационной способности тромбоцитов у пациентки группы 1 (Л., 64 года) на 5-е сут от начала приема антиагрегантов по сравнению с 1-ми сут.

Известно, что при критических состояниях, вызванных развитием полиорганной недостаточности различной этиологии, на первое место выходят нарушения, связанные с текучестью крови в системе микроциркуляции. Оптимизация текучести крови при воздействии на организм экстремальных условий служит адаптивным фактором, увеличивающим резервные возможности системы кровообращения в целом [14]. Из ряда научных работ известно, что при синдроме системного воспалительного ответа происходит активация клеток эндотелия, моноцитов, лейкоцитов тромбоцитов, выброс множества биологически активных веществ [2, 3]. Это не только приводит к склеиванию клеток крови как между собой, так и с эндотелием, но и к массивной экспрессии тканевого фактора на всем протяжении внутрисосудистого пространства и обусловливает высокий риск возникновения тромбозов, особенно в системе микроциркуляции. Применение антиагрегантов и антикоагулянтов позволяет снизить риск развития тяжелых осложнений при COVID-19 и повысить выживаемость пациентов с этой патологией [5, 6]. Применение клопидогреля или аспирина в стандартной дозе в дополнение к антикоагулянтам позволило снизить летальность в группе 1 пациентов по сравнению с группой 2 на 15 % (в группе 1 из 26 пациентов умерло 6 человек, летальность составила 23 %, в группе 2 из 29 пациентов умерло 11 человек, летальность составила — 38 %). Полученные результаты подтверждают целесообразность дополнительного к основной терапии антикоагулянтами назначения антиагрегантов в стандартной дозе пациентам с высоким риском развития тромбозов.

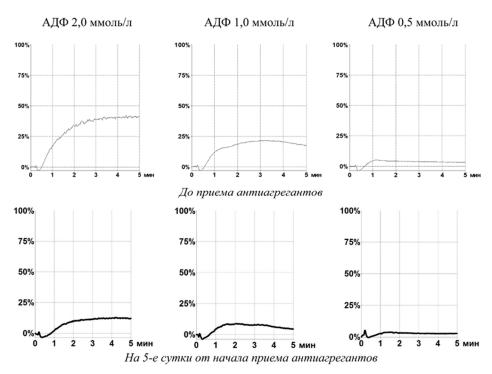


Рис. 1. Агрегатограммы пациентки Л., 64 года

Заключение

Патогенез коагулопатии при COVID-19 остается недостаточно исследованным. Мониторинг всех звеньев системы гемостаза (включая сосудисто-тромбоцитарный гемостаз и фибринолиз) должен быть рутинным и регулярным исследованием при терапии тяжелых пациентов с COVID-19. Несмотря на, казалось бы, частично понятный механизм гиперкоагуляции при COVID-19, до сих пор рекомендована лишь тромбопрофилактика в виде монотерапии антикоагулянтами. Очевидно, что профилактических доз анти-

коагулянтов недостаточно, а единственный выход в виде увеличения их дозы не является патофизиологически оправданным. С учетом того, что тромбоциты являются источником активного синтеза гуморальных факторов, стимулирующих одновременно процессы образования тромбов и воспаления, обоснованно добавлять антиагреганты к профилактике и лечению тромботических осложнений у пациентов с COVID-19. Необходимо проводить проспективные исследования различных патогенетических механизмов коагулопатии, направленные на изучение комплексного подхода для профилактики образования тромбов.

Список литературы

- 1. Бофанова Н. С., Милтых И. С., Зенин О. К. Вопросы патогенеза некоторых неврологических осложнений при новой коронавирусной инфекции (по данным зарубежной литературы) // Профилактическая медицина. 2022. Т. 25, № 8. С. 98–104. doi: 10.17116/profmed20222508198
- 2. Tang N. [et al.]. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia // Journal of Thrombosis and Haemostasis. 2020. Vol. 18, № 4. P. 844–847. doi: 10.1111/jth.14768
- 3. Ackermann M. [et al.]. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19 // New England Journal of Medicine. 2020. Vol. 383, № 2. P. 120–128. doi: 10.1056/NEJMoa2015432
- 4. Hottz E. D. [et al.]. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19 // Blood. 2020. Vol. 136, № 11. P. 1330–1341. doi: 10.1182/blood.2020007252
- Rapkiewicz A. V. [et al.]. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series // eClinicalMedicine. 2020. Vol. 24. doi: 10.1016/j.eclinm.2020.100434
- 6. Lax S. F. [et al.]. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome // Annals of Internal Medicine. 2020. Vol. 173, № 5. P. 350–361. doi: 10.7326/M20-2566
- 7. Hansen M. [et al.] The RNA-Binding Protein ATXN2 is Expressed during Megakaryopoiesis and May Control Timing of Gene Expression // International Journal of Molecular Sciences. 2020. Vol. 21, № 3. P. 967. doi: 10.3390/ijms21030967
- 8. Woulfe D., Yang J., Brass L. ADP and platelets: the end of the beginning // The Journal of Clinical Investigation. 2001. Vol. 107. ADP and platelets. № 12. P. 1503–1505. doi: 10.1172/JCI13361
- 9. Palta S., Saroa R., Palta A. Overview of the coagulation system // Indian Journal of Anaesthesia. 2014. Vol. 58, № 5. P. 515. doi: 10.4103/0019-5049.144643
- 10. Минушкина Л. О., Савина Н. М. Лечение больного артериальной гипертензией высокого риска: нужна ли антиагрегантная терапия? // Артериальная гипертензия. 2015. Т. 21, № 2. С. 190–196.
- 11. Mainous A. G. [et al.]. Use of Aspirin for Primary and Secondary Cardiovascular Disease Prevention in the United States, 2011–2012 // Journal of the American Heart Association. 2014. Vol. 3, № 4. P. e000989. doi: 10.1161/JAHA.114.000989
- 12. Министерство здравоохранения Российской Федерации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19): временные методические рекомендации. Версия 12. URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/075/original/%D0%92%D0%9C%D0%A0_COVI D-19 V12.pdf (дата обращения: 21.09.2021).
- 13. Connors J. M., Levy J. H. COVID-19 and its implications for thrombosis and anticoagulation // Blood. 2020. T. 135, № 23. C. 2033–2040. doi: 10.1182/blood.2020006000
- 14. Галенок В. А., Гостинская Е. В., Диккер В. Е. Гемореология при нарушениях углеводного обмена. Новосибирск: Наука. Сиб. отд-ние, 1987. 291 с.

References

- 1. Bofanova N.S., Miltykh I.S., Zenin O.K. Questions of the pathogenesis of some neurological complications during a new coronavirus infection (by the foreign literature). *Profilakticheskaya meditsina = Preventive medicine*. 2022;25(8):98–104. (In Russ.). doi: 10.17116/profmed20222508198
- 2. Tang N. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. *Journal of Thrombosis and Haemostasis*. 2020;18(4):844–847. doi: 10.1111/jth.14768
- Ackermann M. et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. New England Journal of Medicine. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
- 4. Hottz E.D. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. *Blood*. 2020;136(11):1330–1341. doi: 10.1182/blood.2020007252
- Rapkiewicz A.V. et al. Megakaryocytes and platelet-fibrin thrombi characterize multiorgan thrombosis at autopsy in COVID-19: A case series. eClinicalMedicine. 2020;24. doi: 10.1016/j.eclinm.2020.100434
- 6. Lax S.F. et al. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome. *Annals of Internal Medicine*. 2020;173(5):350–361. doi: 10.7326/M20-2566
- 7. Hansen M. et al. The RNA-Binding Protein ATXN2 is Expressed during Megakaryopoiesis and May Control Timing of Gene Expression. *International Journal of Molecular Sciences*. 2020;21(3):967. doi: 10.3390/ijms21030967
- 8. Woulfe D., Yang J., Brass L. ADP and platelets: the end of the beginning. *The Journal of Clinical Investigation*. 2001;107(ADP and platelets. №12):1503–1505. doi: 10.1172/JCI13361
- 9. Palta S., Saroa R., Palta A. Overview of the coagulation system. *Indian Journal of Anaesthesia*. 2014;58(5):515. doi: 10.4103/0019-5049.144643
- 10. Minushkina L.O., Savina N.M. Treatment of a patient with high-risk arterial hypertension: is antiplatelet therapy necessary? *Arterial'naya gipertenziya = Arterial hypertension*. 2015;21(2):190–196. (In Russ.)
- 11. Mainous A.G. et al. Use of Aspirin for Primary and Secondary Cardiovascular Disease Prevention in the United States, 2011–2012. *Journal of the American Heart Association*. 2014;3(4):e000989. doi: 10.1161/JAHA.114.000989
- 12. Ministerstvo zdravookhraneniya Rossiyskoy Federatsii. Profilaktika, diagnostika i lechenie novoy koronavirusnoy infektsii (COVID-19): vremennye metodicheskie rekomendatsii. Versiya 12 = Ministry of Health of the Russian Federation. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19): temporary methodological recommendations. Version 12. (In Russ.). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/075/original/%D0%92%D0%9 C%D0%A0 COVID-19 V12.pdf (accessed 21.09.2021).
- 13. Connors J.M., Levy J.H. COVID-19 and its implications for thrombosis and anticoagulation. *Blood*. 2020;135(23):2033–2040. doi: 10.1182/blood.2020006000
- 14. Galenok V.A., Gostinskaya E.V., Dikker V.E. Gemoreologiya pri narusheniyakh uglevodnogo obmena = Hemorheology in disorders of carbohydrate metabolism. Novosibirsk: Nauka. Sib. otd-nie, 1987:291. (In Russ.)

Информация об авторах / Information about the authors

Данил Владимирович Горелов

врач анестезиолог-реаниматолог, Клиническая рудничная больница Министерства здравоохранения Донецкой народной республики (Россия, г. Макеевка, ул. Больничная, 1)

E-mail: GorelovD.V@yandex.ru

Danil V. Gorelov

Anesthetist-resuscitator, Makeevka Clinical Hospital (1 Bolnichnaya street, Makeevka, Russia)

Владимир Владимирович Потапов

кандидат медицинских наук, ассистент кафедры анестезиологии, Донецкий национальный медицинский университет имени М. Горького (Россия, г. Донецк, пр-т Ильича, 16)

E-mail: x3x3x23@rambler.ru

Илья Сергеевич Милтых

студент, Медицинский институт, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40)

E-mail: me@miltykh.com

Олег Константинович Зенин

доктор медицинских наук, профессор, профессор кафедры анатомии человека, Медицинский институт, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40)

E-mail: zen.olegz@gmail.com

Vladimir V. Potapov

Candidate of medical sciences, assistant of the sub-department of anesthesiology, Donetsk National Medical University named after of M. Gorky (16 Ilyicha avenue, Donetsk, Russia)

Ilia S. Miltykh

Student, Medical Institute, Penza State University (40 Krasnaya street, Penza, Russia)

Oleg K. Zenin

Doctor of medical sciences, professor, professor of the sub-department of human anatomy, Medical Institute, Penza State University (40 Krasnaya street, Penza, Russia)

Авторы заявляют об отсутствии конфликта интересов / The authors declare no conflicts of interests.

Поступила в редакцию / Received 18.05.2023

Поступила после рецензирования и доработки / Revised 30.06.2023

Принята к публикации / Accepted 21.08.2023